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The spin flip-flop transition rate is calculated for the case of
spectral spin diffusion within a system of dipolarly coupled
spins in a solid where the lattice vibrations are present. Long-
wavelength acoustic phonons time-modulate the interspin dis-
tance rij and enhance the transition rate via the change of the
1/rij

3 term in the coupling dipolar Hamiltonian. The phonon-
assisted spin diffusion rate is calculated by the golden rule in
the Debye approximation of the phonon density of states. The
coupling of the spins to the phonons introduces temperature
dependence into the transition rate, in contrast to the spin
diffusion in a rigid lattice, where the rate is temperature-
independent. The direct (one-phonon absorption or emission)
processes introduce a linear temperature dependence into the
rate at temperatures not too close to T 5 0. Two-phonon
processes introduce a more complicated temperature depen-
dence that again becomes simple analytical for temperatures
higher than the Debye temperature, where the rate is propor-
tional to T 2, and in the limit T3 0, where the rate varies as T 7.

aman processes (one-phonon absorption and another phonon
mission) dominate by far the phonon-assisted spin flip-flop
ransitions. © 2000 Academic Press

Key Words: phonons; spin diffusion; nuclear magnetic
resonance.

I. INTRODUCTION

The concept of spin diffusion was introduced by Bloembe
(1, 2) in order to describe transport of spin polarization betw
spatially remote spins inside a rigid crystalline lattice. Spin d
sion provides a basis for understanding numerous phenom
solid-state magnetic resonance like relaxation by parama
impurities (3), dynamic nuclear polarization by Overhauser
solid-state effects (3), electron-nuclear double resonance4)
ENDOR), and cross polarization in the rotating frame u
artmann–Hahn matching or adiabatic demagnetization an
agnetization (4). In addition, spin diffusion also provides info
ation about the spatial proximity of atoms in solids in a t
imensional exchange NMR spectroscopy (5).
Despite the fact that the exchange of spin polarization

ween remote spins involves a single physical process, d

ined by the flip-flop term of the magnetic dipole–dipole
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nteraction (the term B in the dipolar “alphabet”), two kinds
pin diffusion have been introduced in the literature (6, 7). The

first is the transport of spin polarization between spat
separated equivalent spins with identically spaced energy
els, so that the total energy of a given flip-flop proces
conserved within the given spin pair. This kind of spin di
sion is named “spatial” spin diffusion and can take place w
an isolated system of dipolarly coupled spins, not cou
further to an extraneous dipolar reservoir of another spin
cies or to a crystalline lattice. The spatial spin diffusion
resents a pure quantum phenomenon, which is temper
independent and proceeds also atT 5 0.

In contrast to spatial spin diffusion, which takes place
ween equivalent spins only, the polarization exchange
ween nonequivalent spatially remote spins (that posess d
nt resonance frequencies) was named “spectral”
iffusion. There the polarization exchange again oc

hrough the same spin flip-flop process, but there is a mism
etween the spacings of energy levels of the spins involve

hat the spin energy is not conserved in a flip-flop transi
ne possible way to satisfy the energy conservation is a di
oupling to an extraneous spin reservoir (6, 7). There the tota
hysical system consists of two or more nuclear spin
ystems. One of them contains the resonant spins, where
ther spins are “passive” and do not participate directly in
xchange process but supply the energy needed to trans
olarization between the nonequivalent resonant spins
ther possible way to satisfy the energy conservation is vi
ultiple-quantum spin flips (8). In both cases one deals ag
ith purely quantum effects that do not involve coupling of
pins to the lattice, so that the flip-flop transition rate is t
erature-independent and different from zero also atT 5 0.
Both spatial and spectral spin diffusion processes desc

above are characterized by temperature-independent rat
stants, reflecting the fact that the spin flip-flop transitions
performed within the spin subsystem only, without couplin
the lattice. However, in solids with a well-defined crystal
lattice, lattice vibrations can affect significantly the spin-di
sion rate. The strength of the dipolar spin Hamiltonian dep

3
on the distance between the spin pair as 1/r . Longitudinal
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336 DOLINŠEK, CEREGHETTI, AND KIND
acoustic phonons time-modulate this distance in a harm
way so that the distance is reduced in a part of the c
resulting in an enhancement of the spin diffusion rate. Su
phonon-assisted process should yield a spin diffusion rat
depends on temperature, as a consequence of the coup
spins to the lattice.

In this paper we present a theoretical description of the
perature-dependent phonon-assisted spin diffusion in s
where the long-wavelength longitudinal acoustic phonons
propagate through the crystalline lattice. The case of spectra
diffusion is considered where the energy mismatch of a g
flip-flop transition is compensated by the phonon field. The la
is treated quantum mechanically as a set of independent har
oscillators in the Debye approximation. The spin-diffusion ra
calculated in first-order perturbation by the golden rule, and
perature-dependent contributions to the total rate are derived
calculation follows steps similar to those for the derivation o
magnetic spin–lattice relaxation model by spin–phonon cou
developed for electronic spins by Waller (9) and extended t
nuclear spins by Abragam (10).

The motivation for this work came from recent studies
low dynamic processes in the Rb12x(ND4) xD2PO4 proton

glass family by two-dimensional (2D) NMR exchange sp
troscopy (11, 12) and NMR spin–lattice relaxation (13). The
NMR exchange rate and the spin–lattice relaxation ra
proton glasses are believed to be determined by the moti
deuterons in hydrogen bonds. The two rates were found
strongly temperature-dependent at high temperatures, wh
they became weakly temperature-dependent at low tem
tures. This was interpreted as a transition from classical
mally activated hopping motion to quantum tunneling wi
hydrogen bonds. However, a weak temperature-depende
both rate constants could originate also from spin-diffu
effects, provided the coupling of spins to the lattice is ta
into account.

Another motivation for this work came from the more g
eral, long-existing problem of spectrum analysis in the
exchange NMR spectroscopy. The atomic exchange in
space (the chemical exchange) and the exchange of n
spin polarization between spatially fixed nuclei (spin diffus
produce identical cross peaks in the 2D spectrum and can
discriminated directly from the 2D exchange spectra.
discrimination of the two effects is usually based on the
sumption that the chemical exchange rate depends on te
ature but is independent of the frequency separation bet
the exchanging resonance lines, whereas the spin diffusio
behaves in the opposite way, depending on the separatio
being temperature-independent. Recognizing that spin d
sion might be a temperature-dependent phenomenon mak
above criterion questionable.

Another point to mention is that the temperature-inde
dent spin diffusion can exist only in spin systems with ne
gible coupling of spins to the lattice. In solids this coup

generally cannot be neglected and the introduction of the lattim
ic
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as a thermal bath immediately introduces temperature d
dence into the spin diffusion rate. The same is true for liq
where molecular vibrations can play the role of lattice vi
tions. The temperature-dependent spin diffusion should
appear more as a rule than as the exception.

II. THE COUPLING HAMILTONIAN

We consider an ensemble of spins with a spin quan
numberI and gyromagnetic ratiog I . The Hamiltonian of th
total system, consisting of spins in a magnetic field and
lattice, is

H 5 H0 1 Hph 1 H int. [1]

Here,H 0 5 ¥ i H 0i is the sum of single-spin Hamiltonians
the absence of spin–spin interactions, comprising the Zee
chemical shift, and electric quadrupolar terms. We assum
the magnetic quantum numbersmi of individual spins are goo
quantum numbers, so thatH 0i defines a set of energy lev
umi& for each spin via the relationH 0i umi& 5 Emi umi&. The
details of the complete energy-level diagram need no
specified for our purpose. The only constraint is that t
should exist two transitions within this level manifold (that
shall calla andb), which have similar transition frequenc
va andvb with the differenceD 5 va 2 vb. We shall furthe
assume in our choice of the interaction Hamiltonian that ta
and b transitions correspond to single-quantum (uDmu 5 1)
transitions. Examples of the above situation are displaye
Fig. 1. This can be, e.g., two identicalI 5 1

2 spins with differen
chemical shifts, a quadrupole-perturbedI 5 1 spin in a high

3

FIG. 1. Some representative situations of the double-spin transition
tween the levels with similar transition frequencies, induced by the flip
term of the dipolar Hamiltonian. Thea andb transitions take place simult
neously on two neighboring spins: (a) two identical spins,I 5 1

2, with different
hemical shifts; (b) quadrupole-perturbedI 5 1 spin in a high magnetic fiel
c) quadrupolarI 5 3

2 nucleus with a small Zeeman perturbation. In the do
transition the spin energy is not conserved.
ceagnetic field or a quadrupolarI 5 2 nucleus with a small



po

e
fr
th
cte
on
n

nd
l

f th
ma
,

op

pin
eti

rigi

su

rm

o

like
s
-

t
ore

a ctor
u

,
ctor

nal
a

nian
c if

of the
nif
ge of
per-

rox
ns of
duce
h
t on

stic
the

e

e-
onent

337PHONON-ASSISTED SPIN DIFFUSION IN SOLIDS
Zeeman perturbation, to mention just a few of the many
sible situations.

The lattice HamiltonianH ph is described in terms of lattic
vibrations (phonons). We restrict to the case where the
quency mismatchD lies within the acoustic phonon bandwid
so that the high-frequency optical phonons can be negle
We consider the longitudinal acoustic phonons only, as
these are able to change the relative distances betwee
spins. The theory of a harmonic crystal yieldsH ph in the form

Hph 5 O
kY

\vkYSbkY
1bkY 1

1

2D , [2]

where kY and v kY 5 cukY u are the phonon wave vector a
frequency,c is the speed of sound, andbkY

1 andbkY are the usua
phonon creation and annihilation operators.

The coupling between the spins is taken in the form o
dipole–dipole interaction, which is considered to be a s
perturbation toH 0. For a pair of spinsi andj in a rigid lattice
separated by a distanceRij 5 uRY ij u 5 uRY i 2 RY j u, we write the
part of the interaction Hamiltonian relevant for the flip-fl
transitions as

H int
~0! 5 2

1

4

g I
2\ 2

Rij
3 ~1 2 3 cos2u ij!~I i

1I j
2 1 I i

2I j
1!. [3]

Here,u ij is the angle between the vector joining the two s
and thez-axis (taken in the direction of the external magn
field).

In the presence of lattice vibrations, we replace the
lattice positionRY i by

rY i 5 RY i 1 uY i, [4]

whereuY i is a time- and space-dependent displacement. As-
ing that the displacement differenceuuY i 2 uY j u of the two
neighboring spins is small compared to their distanceRij , we
expand the factorr ij

23 in power series up to the quadratic te
and get

1

r ij
3 5

1

Rij
3 H1 2

3~uY i 2 uY j! z RY ij

Rij
2

1
15

2

@~uY i 2 uY j! z RY ij#
2

Rij
4 2

3

2

~uY i 2 uY j!
2

Rij
2 J . [5]

The interaction Hamiltonian can now be written as a sum

three terms,
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H int 5 H int
~0! 1 H int

~1! 1 H int
~2!, [6]

with

H int
~1! 5 2H int

~0!
3~uY i 2 uY j! z RY ij

Rij
2 [7a]

and

H int
~2! 5 H int

~0!H15

2

@~uY i 2 uY j! z RY ij#
2

Rij
4 2

3

2

~uY i 2 uY j!
2

Rij
2 J . [7b]

The Hamiltonian of Eq. [6] causes double spin transitions
those shown in Fig. 1, where the transitiona on one spin i
accompanied by a simultaneous transitionb on another, spa
ially remote spin.

The interaction Hamiltonian can be put in a form m
ppropriate for calculations by writing the displacement ve

Y in a normal coordinate expansion

uY 5 O
kY

Î \

2MNvkY
eY kYe

ikY zRY~bkY 1 b2kY
1 !. [8]

HereN is the number of normal modes,M is the ionic mass
andv kY andeY kY denote the frequency and the polarization ve
of a classical normal mode with a wave vectorkY . We dropped
the polarization indexs as we are considering the longitudi

coustic phonons only.
The phonon-dependent parts of the interaction Hamilto

ontain a scalar product (uY i 2 uY j) z RY ij that is non-zero only
the displacement vector has a component in the direction
interspin vectorRY ij . Only such phonons can produce a sig-
icant change of the distance between the spins. The chan
the distance by the atomic displacements in the direction
pendicular toRY ij is much smaller and can be to a good app-
imation neglected when we are considering the fluctuatio
r ij

23. However, the perpendicular displacements shall in
fluctuations of the cosu term in the dipolar Hamiltonian, whic
can also affect the spin diffusion rate. We shall commen
this point under Discussion.

We define the angle betweenRY ij and the wave vectorkY asf ij

(recall that since we are dealing with longitudinal acou
phonons, the direction ofkY is the same as the direction of
polarization vectoreY kY) and write

~uY i 2 uY j! z RY ij 5 uuY i 2 uY juRijcosf ij 5 ~uY i 2 uY j! iRij . [9]

Here, (uY i 2 uY j) i 5 uuY i 2 uY j ucos f ij is the component of th
displacement in the direction of the interspin vectorRY ij . In the
long wavelength limit we assume thatuY does not vary appr
ciably over the interatomic distances and replace a comp

such as (uY i 2 uY j) i by its first-order expansion
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338 DOLINŠEK, CEREGHETTI, AND KIND
~uY i 2 uY j! i 5 Rij

­ui

­ xi
, [10]

where thexi axis of the coordinate system was chosen par
to the vectorRY ij . Equation [8] now yields

­ui

­ xi
5 i cos2f ij O

Yk

Î \v Yk

2MNc2 eikY zRY~bkY 1 b2kY
1 !, [11]

so that Eqs. [7a, 7b] can be rewritten as

H int
~1! 5 23H int

~0!
­ui

­ xi
[12a]

and

H int
~2! 5 H int

~0!F6S ­ui

­ xi
D 2

2
3

2

~uY i 2 uY j! '
2

Rij
2 G < 6H int

~0!S ­ui

­ xi
D 2

,

[12b]

here—as stated above—the effect of the perpendicula
lacement component (uY i 2 uY j)' in Eq. [12b] can be ne-

glected. The termsH int
(1) andH int

(2) induce spin flip-flop transition
via one-phonon and two-phonon processes, respectively

III. PHONON-ASSISTED SPIN DIFFUSION RATE

The transition rate for a combineda, b transition, taking
place on two different spins in the presence of a phonon
will now be calculated by the golden rule. Due to the lim
validity of the golden rule, this treatment is an approxim
one. A more exact treatment of the transition rate, like
given in Ref. (7), becomes hopelessly complicated in
presence of the lattice Hamiltonian. The rate will be calcul
by the first-order formula

w12 5
2p

\ O
n

u^2, nuH intu1, n0&u 2d~E2,n 2 E1,n0!. [13]

Here u1, n0& and u2, n& represent the initial and final states
the combined spin–phonon system, respectively (1, 2 re
the spin states andn, n0 denote the phonon states), and
ummation is made over the phonon states.

. One-Phonon (Direct) Processes

The HamiltonianH int
(1) of Eq. [12a] contains single-phon

creation and annihilation operators that permit an absorpti
emission of a single phonon. It thus describes one-ph
(direct) processes.

a. One-phonon absorption.We assume that the spini

undergoes a transitionmi 3 mi 1 1 (transitiona) and the spin
el

is-

d,

e
t

d

to
e

or
on

j undergoes a transitionmj 3 mj 2 1 (transitionb), with the
frequency differenceD 5 va 2 vb . 0. Phonon states a
characterized by a mean number of phononsnkY of a given wave
vectorkY present at a temperatureT:

nkY 5
1

exp~\vkY /kBT! 2 1
. [14]

A given phonon state will be denoted asunkY&. The initial state
of the total system is thusu1, n0& 5 umi , mj , nkY& and the fina
state isu2, n& 5 umi 1 1, mj 2 1, nkY 2 1&. Equation [13] is
now written as

w12 5 9 z
2p

\ 2 O
n

U ^mi 1 1, mj 2 1uH int
~0!umi, mj&

3 KnkY 2 1U ­ui

­ xi
UnkYL U 2

d~D 2 vkY!. [15]

e write the matrix element ofH int
(0) in an abbreviated notatio

as

u^H int
~0!&u mi,mj

2 5 u^mi 1 1, mj 2 1uH int
~0!umi, mj&u 2

and get

u^H int
~0!&u mi,mj

2 5
1

16

g I
4\ 4

Rij
6 ~1 2 3 cos2u ij!

2

3 @I ~I 1 1! 2 mi~mi 1 1!#

3 @I ~I 1 1! 2 mj~mj 2 1!#. [16]

The phonon matrix element is obtained using the rela
bkY

1unkY& 5 =nkY 1 1unkY 1 1& and bkY unkY& 5 =nkY unkY 2 1& as

U KnkY 2 1U ­ui

­ xi
UnkYL U 2

5 cos4f ij

\vkY

2MNc2 nkY. [17]

The summation over the phonon states is made in two
by summing first over the directions of the wave vectokY

and then over the phonon frequenciesv kY. We assume fo
simplicity that the directions ofkY are distributed isotropical
in space and average the cos4f ij term over the sphere. We g
(4p)21 * 0

p dV cos4f ij 5 1
5. The summation overv kY is

replaced by an integration over the Debye density of sta

O
vkY

3 E
0

vD

dvkYr~vkY! with r~vkY! 5
3Nv kY

2

v D
3 .
Here,vD represents the Debye cutoff frequency that is related
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339PHONON-ASSISTED SPIN DIFFUSION IN SOLIDS
to the Debye temperatureuD by \vD 5 kBuD. After integration
Eq. [15] becomes

w12 5
27p

5\
u^H int

~0!&u mi,mj

2
1

Mc2 S D

vD
D 3 1

exp~\D/kBT! 2 1
.

[18]

The one-phonon absorption ratew12 vanishes forT 3 0,
eflecting the fact that there are no phonons left at zero
erature. For\D ! kBT (the condition that will be met i

spectral spin diffusion at practically all temperatures, as
spacing of the resonance linesD/2p is of the order of kHz
whereaskBT/h amounts to 20 MHz at a temperature as low

mK), one is allowed to replace [exp(\D/kBT) 2 1]21 in Eq.
[18] by kBT/\D, so that the rate is directly proportional to
temperature;w12 } T.

b. One-phonon emission.In a reverse transitionmi 1
13 mi andmj 2 13 mj , the energy differenceD is negative
so that one phonon has to be emitted to satisfy the en
conservation. The initial state of the system is nowu1, n0& 5
umi 1 1, mj 2 1, nkY&, and the final state isu2, n& 5 umi , mj ,
nkY 1 1&. The calculation of the one-phonon emission ratew21

proceeds in the same way as before. There one encounte
phonon matrix element of the form

U KnkY 1 1U ­ui

­ xi
UnkYL U 2

5 cos4f ij

\vkY

2MNc2 ~nkY 1 1!, [19]

ielding

w21 5 exp~\D/kBT!w12. [20]

The one-phonon absorption and emission rates thus obe
tailed balance principlew12/w21 5 exp(2\D/kBT). The emis-
sion ratew21 is non-zero also atT3 0, reflecting the fact tha
the spontaneous one-phonon emission can occur also atT 5 0.
However, due to the validity of the inequality\D ! kBT at
practically all temperatures (except in the close vicinity ofT 5
0), one can replace exp(\D/kBT)[exp(\D/kBT) 2 1]21 in Eq.
[20] again bykBT/\D, so that the one-phonon emission rat
also directly proportional to the temperature;w21 } T.

The total one-phonon flip-flop transition ratewij
(1) of a given

pair of spinsi andj is obtained by summing up the absorpt
nd emission rates,

wij
~1! 5 w12 1 w21

5
27p

5\
u^H int

~0!&u mi,mj

2
1

Mc2 S D

vD
D 3 2kBT

\D
. [21]

The corresponding one-phonon spin diffusion rate is obta
by summing the contributions from all spinsj that interac

dipolarly with the given spini
-

e

s

gy

the

de-

s

d

w ~1! 5 O
j

w ij
~1!. [22]

In the calculation ofw(1) one encounters the term¥ j u^H int
(0)&umi ,mj

2

that can be conveniently expressed in terms of the se
moment (14)

M2 5
3

4
g I

4\ 2I ~I 1 1! O
j

~1 2 3 cos2u ij!
2

Rij
6 . [23]

Using Eq. [16] and defining

f 5
@I ~I 1 1! 2 mi~mi 1 1!#@I ~I 1 1! 2 mj~mj 2 1!#

I ~I 1 1!
,

[24]

ne gets

O
j

u^H int
~0!&u mi,mj

2 5
\ 2

12
M2 f [25]

so that the one-phonon spin diffusion rate can be written

w ~1! 5
9p

10
M2 f

1

Mc2 S D

vD
D 3 kBT

D
. [26]

A characteristic feature ofw(1) is its linear dependence
temperature. It thus represents a temperature-dependen
tribution to the total spin-diffusion rate via the direct (o
phonon) absorption and emission processes.

2. Two-Phonon Processes

The HamiltonianH int
(2) of Eq. [12b] contains quadratic form

of the phonon creation and annihilation operators and desc
two-phonon processes. There are four such processes,
phonon absorption, a two-phonon emission, and two Ra
processes (the absorption of one phonon and the emiss
another, and the reverse process). We calculate the tran
rates again by Eq. [13].

a. Two-phonon absorption.The initial state of the system
hereu1, n0& 5 umi, mj, nkY, nkY9&, and the final state isu2, n& 5 umi 1
1, mj 2 1, nkY 2 1, nkY9 2 1&. In the calculation of the matr
element ofHint

(2) one encounters a phonon matrix element

U KnkY 2 1, nkY9 2 1U S ­ui

­ xi
D 2UnkY, nkY9L U 2

5 S \
2 cos4f ijD 2

vkY vkY9 nkY nkY9. [27]

2MNc
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340 DOLINŠEK, CEREGHETTI, AND KIND
In the summation over the phonon states we again first av
over the spherically isotropic distribution ofkY directions an
next sum over the frequency spectrum of both phonons. W

w12
~2abs! 5 18pu^H int

~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6 E dvkY E dvkY9v kY

3v kY9
3

3
1

@exp~\vkY/kBT! 2 1#

3
1

@exp~\vkY9/kBT! 2 1#
d~D 2 vkY 2 vkY9!. [28]

Performing the integration over thed-function, we get

w12
~2abs! 5 18pu^H int

~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6 E

0

D

dv~D 2 v! 3v 3

3
1

$exp@\~D 2 v!/kBT# 2 1%

3
1

@exp~\v/kBT! 2 1#
. [29]

ere the limits of integration [0,D] reflect the fact that onl
hose phonons from the spectrum participate in the two-ph
bsorption process whose frequencies satisfy the energy
erving conditionv kY 1 v kY9 5 D. SinceD is small compare
o vD, only a small part of the phonon spectrum is involv

b. Raman process.In the Raman process, a phononkY9 is
absorbed whereas another phononkY is emitted. The initial an
final states are hereu1, n0& 5 umi , mj , nkY, nkY9& and u2, n& 5
umi 1 1, mj 2 1, nkY 1 1, nkY9 2 1&. We assume that th
absorbed phonon has higher energy than the emitted one
the energy conservation is given byv kY9 5 v kY 1 D. A
straightforward calculation yields the rate for this Raman
cess (denoted as R1) as

w12
~R1! 5 18pu^H int

~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6 E

D

vD

dv~D 2 v! 3v 3

3
1

$exp@\~D 2 v!/kBT# 2 1%

3
1

@exp~\v/kBT! 2 1#
. [30]

quation [30] is exactly the same as Eq. [29], except for
imits of integration which extend here fromD to vD (note tha
sincev . D, the negative sign of (D 2 v)3 in the integral is
ompensated by the negative sign of the {exp[\(D 2 v)/kBT]

21 (R1)
2 1} term, so thatw12 is positive). The integration limits
ge

et

on
on-

that

-

e

[D, vD] demonstrate that in the Raman process the pho
from the whole spectrum participate, with the restriction
the difference in frequencies of the two phonons invo
equalsD. Since D ! vD, practically all phonons from th
spectrum are involved, so that the Raman rate should be
larger than the two-phonon absorption rate.

Since the ratesw12
(2abs) andw12

(R1) differ only in the integratio
limits, we can combine these two terms into a sum rate

w12
~2abs! 1 w12

~R1!

5 18pu^H int
~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6 E

0

vD

dv~D 2 v! 3v 3

3
1

$exp@\~D 2 v!/kBT# 2 1%
z

1

@exp~\v/kBT! 2 1#
,

[31]

here the integration now extends from 0 tovD.

c. Two-phonon emission rate and the inverse Raman
In the reverse spin transitionsmi 1 1 3 mi andmj 2 1 3

j , the energy differenceD is negative. In order to satisfy t
energy conservation, two phonons are emitted (a two-ph
emission process) or a phononkY is emitted andkY9 is absorbed

ith the energy of the emitted phonon higher than that o
bsorbed one (the reverse Raman process). The initial s

1, n0& 5 umi 1 1, mj 2 1, nkY, nkY9&, and the final state for th
two-phonon emission isu2, n& 5 umi , mj , nkY 1 1, nkY9 1 1&

ith the energy conservation conditionv kY 1 v kY9 5 D,
whereas for the reverse Raman process the final state isu2, n&
5 umi , mj , nkY 1 1, nkY9 2 1& with v kY9 5 v kY 2 D. Performing
the same calculation as before, we get the sum of the
phonon emission ratew21

(2em) and the reverse Raman ratew21
(R2) as

w21
~2em! 1 w21

~R2! 5 exp~\D/kBT!@w12
~2abs! 1 w12

~R1!#. [32]

The total two-phonon transition ratewij
(2) of the pair of spin

i and j is obtained by summing up the rates of all f
wo-phonon processes. We get

wij
~2! 5 w12

~2abs! 1 w12
~R1! 1 w21

~2em! 1 w21
~R2!

5 18pu^H int
~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6 @1 1 exp~\D/kBT!#

3 E
0

vD

dv~D 2 v! 3v 3
1

$exp@\~D 2 v!/kBT# 2 1%

3
1

@exp~\v/kBT! 2 1#
. [33]

(2)
It is easy to see that sinceD ! vD, the ratewij is essentially
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independent of the energy mismatchD. Low frequenciesv '
contribute almost negligibly to the integral in Eq. [33],

hat it is allowed that we make theD 3 0 approximation
yielding

wij
~2! 5 18pu^H int

~0!&u mi,mj

2
1

~Mc2! 2

1

v D
6

3 E
0

vD

dv
v 6

cosh~\v/kBT! 2 1
. [34]

The two-phonon spin diffusion rate is again obtained
summing the contributions from allj spins,

w ~2! 5 O
j

w ij
~2!. [35]

Using Eq. [25]w(2) can be written as

w ~2! 5
3p

2
\ 2M2 f

1

~Mc2! 2

1

v D
6

3 E
0

vD

dv
v 6

cosh~\v/kBT! 2 1
. [36]

The two-phonon ratew(2) thus represents another temperat
dependent contribution to the total spin-diffusion rate. Its
pendence on temperature is displayed in Fig. 2. At tem
tures much higher than the Debye temperatureuD (wherekBT
@ \vD), w(2) gets a simple temperature dependence. Ther

ay expand the cosh term in Eq. [36] in series, and
esulting integral may be calculated easily, yielding

w ~2! 5
3p

5
\ 2M2 f

1

~Mc2! 2

1

vD
SkBT

\ D 2

. [37]

In the high-temperature limitT . uD the ratew(2) thus depend
n temperature asT2. At the other extremeT 3 0, anothe

analytical temperature dependence ofw(2) can be derived b
introducing x 5 \v/kBT into Eq. [36]. The upper limit o
integrationuD/T may then be extended to infinity, yielding

w ~2! 5
3p

2
\ 2M2 f

1

~Mc2! 2

1

v D
6 SkBT

\ D 7

3 E
0

`

dx
x6

coshx 2 1
. [38]

The integral in Eq. [38] is finite so that the ratew(2) varies a
7
T in the limit T 3 0.
y

-
-
a-

e
e

IV. DISCUSSION

The phonon-assisted transition ratesw(1) andw(2) represen
emperature-dependent contributions to the total spin diffu
ate as a result of coupling of the spin degrees of freedom
attice. In a classical picture the temperature-dependence
ates originates from lattice vibrations that time-modulate
istance between the interacting spin partners and chan
/r ij

3 factor in the coupling Hamiltonian, resulting in an-
hanced dipolar interaction between the spins. In the one
non processes only those phonons from the spectrum a
volved whose frequencies equalD. In the two-phono
processes, two-phonon absorption and emission involve
nons from an already larger (but still relatively small) par
the spectrum with frequencies between 0 andD. The Rama
processes, on the other hand, involve phonons from the
spectrum, extending from 0 tovD, so that these process
should be by far dominant at temperatures not too close toT 5

. This can readily be seen by calculating the ratiow(1)/w(2)

FIG. 2. (a) Temperature dependence of the two-phonon spin diffusio
w(2) given by Eq. [36] (the normalized integral of that equation is displa

nly). (b) The ratio ofw(2) (Eq. [36]) and its high-temperature expression g
y Eq. [37] (denoted on this graph aswHT

(2)) as a function of temperature. Th
ratio is shown in order to demonstrate the temperature range whe
high-temperature expressionwHT

(2) is a good approximation tow(2). The two
xpressions agree to better than 90% at temperatures higher thanT ' 0.7uD.
using Eq. [26] and the high-temperature expression Eq. [37].
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One gets

w ~1!

w ~2! 5
3

2

Mc2

kBT S D

vD
D 2

. [39]

The factorMc2/kBT is of the order of 10 at room temperatu
nd since the Debye frequency is typically of the ordervD '

1013 s21, whereasD is of the order of kHz, the ratiow(1)/w(2) !
1 is vanishing small. The one-phonon processes may th
neglected at temperatures not too close to zero. At tem
tures close toT 5 0, however, the one-phonon processes
to dominate over the Raman processes due to the fact th
one-phonon spontaneous emission can still occur atT 5 0,
whereas the Raman processes (where one of the two ph
involved has to be absorbed) vanish due to the vanishing o
phonon occupation numbernkY at T 5 0. In addition to the
one-phonon emission, the two-phonon emission can also
at T 5 0, but both these processes result in very small
diffusion rates. If we are restricted to the temperatures tha
not too close to zero, we may expect that the temper
dependence of the total phonon-assisted spin diffusion rat
be determined by that ofw(2).

Another point to discuss is the use of the long-wavele
pproximation as given by Eq. [10]. This approximat
hich rests on the assumption that the phonon-induced a
isplacementsuY do not vary appreciably over an interatom
istancea, is only correct for vibrations of wavelengthl 5

2pc/v, appreciably larger than the interatomic spacing.
approximation thus breaks down at the upper end of the
non spectrum whenv ' vD. Although there is no real jus-
cation for this step (performed mainly because of mathe
cal tractability), one may anticipate the arguments of Abra
15), who argued in a similar calculation of the phon
nduced NMR spin-lattice relaxation rate that this incon
ency does not appreciably affect the results.

The total spin diffusion rate 1/tSD is obtained by adding th
temperature-dependent contributionsw(1) andw(2) to the tem-
perature-independent contributionw(0) that is determined b
the termH int

(0) (Eq. [6]) of the interaction Hamiltonian,

1

tSD
5 w ~0! 1 w ~1! 1 w ~2!. [40]

The ratew(0) represents the spin diffusion rate in the absen
oupling of spins to the lattice. In our choice of the m
amiltonianH 0, the dipolar interaction between the spinI i

was not taken into account in the calculation of the en
levels, but was treated as a perturbation only that ca
flip-flop transitions between the levels. The levels are
sharp in this approximation, so that in the presence o
energy mismatchD there is no overlap between the levels
real systems such a situation is met in cases where the

ration between the exchanging resonance lines is considera
,

be
ra-
rt
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he
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larger than their widths so that there is no overlap betwee
lines. The lack of energy conservation then yieldsw(0) 5 0 in
he above model.

In a more realistic description, the dipolar coupling betw
he spinsI i , as well as the dipolar coupling of spinsI i to the
“passive” extraneous spinsSj , should be taken into accou
already in the calculation of the energy levels. The le
would then acquire certain widths, and the overlap betwee
resonance lines would induce a non-zero ratew(0). Here, how-
ever, one encounters the problem that the mismatch eneD
in a spin flip-flop transition can be shared rather arbitra
between the phonon field and the dipolar reservoir of
passive spins. This is clearly a complicated situation that i
easy to handle in a theoretical model.

An ad hocsolution of the above problem can be propose
adopting the results of Bloembergen (2), where the spin diffu
sion ratew(0) of theH int

(0) term was derived (again by means
the golden rule) under the assumption of finite linewidths.
resonance lines of the transitionsa andb are described by th
lineshape functionsga(v) and gb(v), respectively, and th
ratew(0) is calculated to be

w ~0! 5
1

12
M2 f E dv9 E dv0ga~v9! gb~v0!d~v9 2 v0!,

[41]

where the integral represents the overlap between the
resonances. This rate vanishes rapidly (exponentially in
case of Gaussian lineshapes) when the frequency sepa
va 2 vb of the lines becomes larger than their widthsDva,b.

The above phonon-assisted spin diffusion ratesw(1) andw(2)

were derived analytically under certain approximations, w
made the calculations mathematically tractable. The app
mations involve the use of the golden rule, the Debye de
of phonon states in a monoatomic crystalline lattice, and
long-wavelength expansion of the atomic displacement
view of that one should not be too surprised if the magnit
of w(1) andw(2), estimated from Eqs. [26] and [36], fail in t
order of magnitude. The temperature dependence of the
(linear in T for the one-phonon processes, andT2 at T . uD

and T7 for T 3 0 for the two-phonon processes) is, on
other hand, typical for phonon-assisted rate processes
hence can be considered as correct. We can estimate the
of magnitude of the two-phonon ratew(2) from Eq. [37] for the
87Rb spin diffusion in ferroelectric RbH2PO4, where the pres-
ence of spin diffusion between the87Rb nuclei was demon-
strated unambiguously (16). The 87Rb second moment w
determined there to beM 2 5 6 3 108 s22, and the Deby
temperature in this crystal is known to be about 400 K, yiel
vD ' 5 3 1013 s21. Takingc ' 3 3 103 ms21 for the spee
of sound, we get atT 5 400 K the order of magnitude
w(2) ' 1028 s21 that results in astronomically long spin dif-

(2)
blysion times. The main reason for the smallness ofw is the
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Debye frequencyvD of the order 1013 s21 in the denominator o
Eq. [37], which essentially kills the rate. The ratew(2) would
increase for several orders of magnitude if the87Rb nuclei were
eplaced by lighter nuclei with larger magnetic dipole m
ents, e.g.,1H. SinceM 2 } g I

4, the second moment of proto
increases by a factorM 2(

1H)/M 2(
87Rb) ' 102. In addition, the

mass ratio yields another increase of [M( 87Rb)/M( 1H)] 2 '
104, so that the order of magnitude of the rate is increas
w(2)( 1H) ' 1022 s21. This is already observable in an exp-
iment. The theory of phonon-assisted spin diffusion, prese
in this paper, should thus be taken as a starting point tow
more complete theory that should yield better estimates o
magnitudes of the rates. One can, however, expect tha
temperature dependence of the rates in such an imp
theory will not be much different from the one derived he

In the above model it was considered that the spin diffu
rate is affected by the lattice vibrations through the fluctua
of the interspin distancer ij only. Phonons can, however, mo-
ify the dipolar Hamiltonian also through another effect, i.e.
fluctuations of the cos2u term. This corresponds to orientat
uctuations of the interspin vectorrY ij with respect to th

direction of the magnetic fieldBY 0 5 (0, 0, B0). The orienta-
tion fluctuations do not influence all spin pairs equally.
cos2u angular dependence implies that the pairs with orie-
tions of their interspin vectors close to parallel (u ' 0) or

erpendicular (u ' p/2) to BY 0 do not alter their dipolar cou-
ling by the fluctuations inu due to the very slow change of t

cos2u there. The pairs with orientationsu ' p/4 are, on th
other hand, affected significantly, so that theu fluctuations
provide another phonon-assisted temperature-dependen
tribution to the total spin diffusion rate.

An interaction Hamiltonian for the combinedu and distanc
fluctuations can be derived by expanding the termr ij

23(t)(1 2
cos2u ij (t)) of the dipolar Hamiltonian in terms of the atom

displacementsuY i . A calculation similar to that used for t
derivation of Eq. [5] yields an expansion up to the linear t
in uY as

1 2 3 cos2u ij~t!

r ij
3~t!

<
1 2 3 cos2u ij

Rij
3 S1 2

3~uY i 2 uY j! z RY ij

Rij
2 D

1
6

Rij
3 Fcos2u ij

~uY i 2 uY j! z RY ij

Rij
2 2 cosu ij

u i
z 2 uj

z

Rij
G . [42]

ere, cosu ij (t) 5 (rY ij z (0, 0, 1)/r ij ) 5 ( zij /r ij ) (with zij 5

ij 1 ui
z 2 uj

z) and cosu ij 5 (RY ij z (0, 0, 1)/Rij ) 5 (Zij /Rij )
are the time-dependent and static (time-average) values
cosine term, respectively. The first term on the right-hand
of Eq. [42] originates from the distance fluctuations whe
the u fluctuations contribute the second term. It is easy to

that theu fluctuations are zero foru 5 0 andp/2. Foru 5 p/2
-

to
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this vanishing is trivial, whereas foru 5 0 the square brack
becomesXij (ui

x 2 uj
x) 1 Yij (ui

y 2 uj
y), that is zero, due t

Xij 5 Yij 5 0.
Equation [42] shows that theu fluctuations might yield

contribution to the total spin diffusion rate comparable to
of the distance fluctuations. Since both kinds of fluctuat
depend on the atomic displacements in the same way, the
flip-flop rate contributions shall exhibit the same tempera
dependence. Theu fluctuations will thus basically increase
magnitude of the phonon-assisted spin diffusion rate. Fu
work is needed to consider this effect in more detail.

V. CONCLUSIONS

Spectral spin diffusion in the presence of acoustic vibratio
a solid-state crystal is a temperature-dependent phenomeno
a relatively simple temperature dependence of the transition
Like in any phonon-assisted incoherent phenomenon (e.g.
non-induced incoherent tunneling), the direct (one-phonon)
cesses introduce a linear temperature dependence of the
temperatures not too close toT 5 0. Two-phonon processes,
the other hand, introduce a more complicated temperature d
dence that again becomes simple analytical in the limitsT . uD

and T 3 0. Recognizing that the spin diffusion rate can
temperature-dependent somewhat complicates the analysis
two-dimensional exchange NMR spectra where the effec
chemical exchange and spin diffusion cannot be resolved
simple way. The discrimination of the two effects is usually ba
on the assumption that the chemical exchange rate depen
temperature but is independent of the frequency separation
exchanging resonance lines, whereas the spin diffusion ra
haves in the opposite way, depending on the separation but
independent of temperature. The fact that in a solid both rate
temperature-dependent, but with a markedly different tempe
dependence (the linear and quadratic phonon-induced depe
at temperatures not too close toT5 0 has to be contrasted with t
Arrhenius thermally activated exponential type in the chem
exchange process), may still be used as a criterion to discrim
between the two effects. However, one has to measure th
experimentally in a rather broad temperature interval and d
mine its origin from the temperature dependence. The simpl
that the rate is temperature-dependent is not enough to as
unambiguously to a chemical exchange process. A similar
perature dependence of the spin diffusion rate can be exp
also in liquids where internal molecular vibrations play the ro
lattice vibrations. The temperature-dependent spin diffusion
seems to be a rather general phenomenon, occuring more a
than as an exception at temperatures not close to the absolu
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3. J. Dolinšek, D. Arčon, B. Zalar, R. Pirc, R. Blinc, and R. Kind, Phys.
Rev. B 54, R6811 (1996).

4. A. Abragam, “The Principles of Nuclear Magnetism,” p. 112, Ox-
ford, Clarendon (1961).

5. A. Abragam, “The Principles of Nuclear Magnetism,” p. 404, Ox-
ford, Clarendon (1961).
6. P. M. Cereghetti and R. Kind, J. Magn. Reson. 138, 12 (1999).


	I. INTRODUCTION
	FIG. 1

	II. THE COUPLING HAMILTONIAN
	III. PHONON-ASSISTED SPIN DIFFUSION RATE
	FIG.2

	IV. DISCUSSION
	V. CONCLUSIONS
	REFERENCES

