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The spin flip-flop transition rate is calculated for the case of
spectral spin diffusion within a system of dipolarly coupled
spins in a solid where the lattice vibrations are present. Long-
wavelength acoustic phonons time-modulate the interspin dis-
tance r; and enhance the transition rate via the change of the
1/rj term in the coupling dipolar Hamiltonian. The phonon-
assisted spin diffusion rate is calculated by the golden rule in
the Debye approximation of the phonon density of states. The
coupling of the spins to the phonons introduces temperature
dependence into the transition rate, in contrast to the spin
diffusion in a rigid lattice, where the rate is temperature-
independent. The direct (one-phonon absorption or emission)
processes introduce a linear temperature dependence into the
rate at temperatures not too close to T = 0. Two-phonon
processes introduce a more complicated temperature depen-
dence that again becomes simple analytical for temperatures
higher than the Debye temperature, where the rate is propor-
tional to T2, and in the limit T — 0, where the rate varies as T".
Raman processes (one-phonon absorption and another phonon
emission) dominate by far the phonon-assisted spin flip-flop
transitions.  © 2000 Academic Press
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I. INTRODUCTION

interaction (the term B in the dipolar “alphabet”), two kinds of
spin diffusion have been introduced in the literatuGed). The
first is the transport of spin polarization between spatially
separated equivalent spins with identically spaced energy le
els, so that the total energy of a given flip-flop process is
conserved within the given spin pair. This kind of spin diffu-
sion is named “spatial” spin diffusion and can take place within
an isolated system of dipolarly coupled spins, not couplec
further to an extraneous dipolar reservoir of another spin spe
cies or to a crystalline lattice. The spatial spin diffusion rep-
resents a pure quantum phenomenon, which is temperatur
independent and proceeds alsolat 0.

In contrast to spatial spin diffusion, which takes place be-
tween equivalent spins only, the polarization exchange be
tween nonequivalent spatially remote spins (that posess diffe!
ent resonance frequencies) was named “spectral” spi
diffusion. There the polarization exchange again occurs
through the same spin flip-flop process, but there is a mismatc
between the spacings of energy levels of the spins involved, s
that the spin energy is not conserved in a flip-flop transition.
One possible way to satisfy the energy conservation is a dipole
coupling to an extraneous spin reserv@ry 7). There the total
physical system consists of two or more nuclear spin sub
systems. One of them contains the resonant spins, whereas t
other spins are “passive” and do not participate directly in the

The concept of spin diffusion was introduced by Bloembergéchange process but supply the energy needed to transfer t

(1, 2 in order to describe transport of spin polarization betwediplarization between the nonequivalent resonant spins. An
spatially remote spins inside a rigid crystalline lattice. Spin diff2ther possible way to satisfy the energy conservation is via th
sion provides a basis for understanding numerous phenomentnitiple-quantum spin flipsg). In both cases one deals again
solid-state magnetic resonance like relaxation by paramagn#iéh purely quantum effects that do not involve coupling of the
impurities @), dynamic nuclear polarization by Overhauser angins to the lattice, so that the flip-flop transition rate is tem-
solid-state effects 3), electron-nuclear double resonanc® ( perature-independent and different from zero als@ at 0.
(ENDOR), and cross polarization in the rotating frame using Both spatial and spectral spin diffusion processes describe
Hartmann—Hahn matching or adiabatic demagnetization and aove are characterized by temperature-independent rate cc
magnetization4). In addition, spin diffusion also provides infor-stants, reflecting the fact that the spin flip-flop transitions are
mation about the spatial proximity of atoms in solids in a twgperformed within the spin subsystem only, without coupling to
dimensional exchange NMR spectroscoBy ( the lattice. However, in solids with a well-defined crystalline
Despite the fact that the exchange of spin polarization bledtice, lattice vibrations can affect significantly the spin-diffu-
tween remote spins involves a single physical process, det&pn rate. The strength of the dipolar spin Hamiltonian depend
mined by the flip-flop term of the magnetic dipole—dipol®n the distance between the spin pair as’.1Longitudinal
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acoustic phonons time-modulate this distance in a harmonig b c
way so that the distance is reduced in a part of the cycle, -1
resulting in an enhancement of the spin diffusion rate. Such a ~~1/2
phonon-assisted process should yield a spin diffusion rate thalf2
depends on temperature, as a consequence of the coupling of We
spins to the lattice.

In this paper we present a theoretical description of the tem-
perature-dependent phonon-assisted spin diffusion in solids, 0 Wg wg
where the long-wavelength longitudinal acoustic phonons cary/y
propagate through the crystalline lattice. The case of spectral spin 2172 wg
diffusion is considered where the energy mismatch of a given

. e . . -1/2
flip-flop transition is compensated by the phonon field. The lattice 1 12—

is treated quantum mechanically as a set of independent harmonic L _ L
FIG. 1. Some representative situations of the double-spin transitions be

oscillators I.n the Debye approxm_lauon. The spln-d|ffu3|on rate ﬂﬁeen the levels with similar transition frequencies, induced by the flip-flop
calculated in first-order perturbation by the golden rule, and tegrm of the dipolar Hamiltonian. The and 8 transitions take place simuilta-

perature-dependent contributions to the total rate are derived. Tibeusly on two neighboring spins: (a) two identical spins, 3, with different
calculation follows steps similar to those for the derivation of thehemical shifts; (b) quadrupole-perturbiee- 1 spin in a high magnetic field,
magnetic spin—lattice relaxation model by spin—phonon coupliﬁg qgedru;r)]olar = %nucleu_s with a small Z;:eman perturbation. In the double
developed for electronic spins by Walled) (and extended to freinsition the spin energy is not conserved.
nuclear spins by Abragani@).

The motivation for this work came from recent studies of . _ _
slow dynamic processes in the RHND,),D,PO, proton as ath_ermal bath |m_med_|ately introduces temperature _depe|
glass family by two-dimensional (2D) NMR exchange speéj_ence into the spin d|ffl_JS|0n rate. The same is true _for I|qU|ds
troscopy (1, 12 and NMR spin—lattice relaxatiori®). The vyhere molecular vibrations can play the rele ef lattice vibra-
NMR exchange rate and the spin—lattice relaxation rate ﬁ'l‘?ns' The temperature-dependent spin d_|ffu5|on should thu
proton glasses are believed to be determined by the motionPGPear more as a rule than as the exception.
deuterons in hydrogen bonds. The two rates were found to be
strongly temperature-dependent at high temperatures, whereas II. THE COUPLING HAMILTONIAN
they became weakly temperature-dependent at low tempera-
tures. This was interpreted as a transition from classical ther-We consider an ensemble of spins with a spin quantun
mally activated hopping motion to quantum tunneling withimumberl and gyromagnetic rati/,. The Hamiltonian of the
hydrogen bonds. However, a weak temperature-dependencéotdl system, consisting of spins in a magnetic field and the
both rate constants could originate also from spin-diffusidattice, is
effects, provided the coupling of spins to the lattice is taken
into account.

Another motivation for this work came from the more gen-
eral, long-existing problem of spectrum analysis in the 2D
exchange NMR spectroscopy. The atomic exchange in ré#re,H, = X; Hy; is the sum of single-spin Hamiltonians in
space (the chemical exchange) and the exchange of nuckbarabsence of spin—spin interactions, comprising the Zeema
spin polarization between spatially fixed nuclei (spin diffusiomhemical shift, and electric quadrupolar terms. We assume th:
produce identical cross peaks in the 2D spectrum and cannotie magnetic quantum numbers of individual spins are good
discriminated directly from the 2D exchange spectra. Thguantum numbers, so thét, defines a set of energy levels
discrimination of the two effects is usually based on the aln;) for each spin via the relatiobls|m,) = E,|m;). The
sumption that the chemical exchange rate depends on templetails of the complete energy-level diagram need not b
ature but is independent of the frequency separation betwesprecified for our purpose. The only constraint is that there
the exchanging resonance lines, whereas the spin diffusion rstteuld exist two transitions within this level manifold (that we
behaves in the opposite way, depending on the separation &hall call « and 8), which have similar transition frequencies
being temperature-independent. Recognizing that spin diffw; and w, with the differenced = w, — wz. We shall further
sion might be a temperature-dependent phenomenon makesasmime in our choice of the interaction Hamiltonian thatathe
above criterion questionable. and B transitions correspond to single-quantupAr = 1)

Another point to mention is that the temperature-indepetransitions. Examples of the above situation are displayed il
dent spin diffusion can exist only in spin systems with neglFig. 1. This can be, e.g., two identida¢ 3 spins with different
gible coupling of spins to the lattice. In solids this couplinghemical shifts, a quadrupole-perturblee= 1 spin in a high
generally cannot be neglected and the introduction of the lattisegnetic field or a quadrupoldr= 3 nucleus with a small

-3/2
3/2

H=Ho+ Hy+ Hine [1]
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Zeeman perturbation, to mention just a few of the many pos- Hu=H9 +HY + H2, [6]
sible situations.

The lattice HamiltoniarH,,, is described in terms of lattice yith
vibrations (phonons). We restrict to the case where the fre-

guency mismatch lies within the acoustic phonon bandwidth 30— 0) - R,
so that the high-frequency optical phonons can be neglected. HY=-HQ —— sz ! [7a]
We consider the longitudinal acoustic phonons only, as only i
these are able to change the relative distances between the
spins. The theory of a harmonic crystal yields, in the form and
@ _ o B0 —0)-RJ* 3 (0 —Ty)*
Hit = Hint{ 2 R? 2 R . [7b]

1
Hon= 2 ﬁwk(bﬁbﬁz), [2]
k

The Hamiltonian of Eq. [6] causes double spin transitions like
those shown in Fig. 1, where the transitianon one spin is
daccompanied by a simultaneous transit@mn another, spa-
tially remote spin.

The interaction Hamiltonian can be put in a form more
propriate for calculations by writing the displacement vectol
in a normal coordinate expansion

where k and w; = c|k| are the phonon wave vector an
frequency g is the speed of sound, aihg andb; are the usual
phonon creation and annihilation operators.

The coupling between the spins is taken in the form of t
dipole—dipole interaction, which is considered to be a smg
perturbation tdH,. For a pair of sping andj in a rigid lattice,

separated by a distané = |R;| = |R, — R|, we write the
part of the interaction Hamiltonian relevant for the flip-flop a=> NG e.e™R(b; + b*)). 8]
transitions as i Wi

1 v2h? HereN is the number of normal moded| is the ionic mass,
_t ;- (1-3 CO§9”)(| AT 3] andwg andég denote the frquency and the polarization vector
4 Rj of a classical normal mode with a wave veckotWe dropped

the polarization indes as we are considering the longitudinal

Here, 0, is the angle between the vector joining the two s in%COUStiC phonons only. . . I
! 9 J 9 b The phonon-dependent parts of the interaction Hamiltoniar

and thez-axis (taken in the direction of the external magnetic i L = . .
field). contain a scalar producti{ — U;) - R; that is non-zero only if

In the presence of lattice vibrations, we replace the rigf&e dlsplacemegt vector has a component in the dlrectlor_1 Of.th
- L = Interspin vectoRR;. Only such phonons can produce a signif
lattice positionR; by . T .
icant change of the distance between the spins. The change
the distance by the atomic displacements in the direction pel
f.=R + 0, [4] pendicular taR; is much smaller and can be to a good approx
imation neglected when we are considering the fluctuations ¢
o ] r;°. However, the perpendicular displacements shall induc:
whered; is a time- and space-dependent displacement. AssUijctuations of the co8 term in the dipolar Hamiltonian, which
ing that the displacement differen¢a; — G| of the two can also affect the spin diffusion rate. We shall comment or
neighboring spins is small compared to their distaRgewe  this point under Discussion.
expand the factor; * in power series up to the quadratic term \we define the angle betwe®) and the wave vectdcasd;
and get (recall that since we are dealing with longitudinal acoustic
phonons, the direction df is the same as the direction of the
polarization vectoig;) and write

0) —
Hi(nt) -

1 1 3(C|| - ':IJ) ° ﬁij
r?:R?{l_R? L -
J ! ! (0 — @) - Ry = |0 — Oy Rjcos dy = (T — TRy [9]
15 [(Gi - aj) - ﬁij]z 3 (Gi - E'j)z
> R 5 R } [51  Here, @ — ), = |0, — Gjcos ¢ is the component of the
! ! displacement in the direction of the interspin vedyr In the
long wavelength limit we assume thatdoes not vary appre-
The interaction Hamiltonian can now be written as a sum ofably over the interatomic distances and replace a compone!

three terms, such as ; — U;), by its first-order expansion
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au, j undergoes a transitiom; — m; — 1 (transitiong), with the
T [10]  frequency difference\ = w, — w, > 0. Phonon states are
characterized by a mean number of phonepsf a given wave

where thex, axis of the coordinate system was chosen parall&f¢tork present at a temperatufie

to the vectorﬁij. Equation [8] now yields

(U —a) =R

1
" expfiwi/keT) — 1°

Ni [14]

hog -

snine? € b+ b, 1]

A given phonon state will be denoted fag). The initial state
of the total system is thud, n,) = |m;, m;, ng) and the final
state is|2, n) = |m; + 1, m; — 1, n; — 1). Equation [13] is
now written as

aU” .
ax coS; %‘,

so that Egs. [7a, 7b] can be rewritten as

HE = ~3HQ o [12a] ,
Wi, = 9'% Z ‘<mi +1,m— 1/ H % m, my)
and n
2 U — 0)? 2 ><<n*—1‘ o n*> 28(A—w*) [15]
H @ = HE&)[G(M) _ 3(u,—2u,)L] ~ Ganog(au) , “ ax | .
aXH 2 Rij (")XH

[12b] We write the matrix element dfi ) in an abbreviated notation

where—as stated above—the effect of the perpendicular d?ss—
placement componenti{ — ;). in Eq. [12b] can be ne
glected. The termBl () andH & induce spin flip-flop transitions
via one-phonon and two-phonon processes, respectively.

[KHEM o = [(my + 1, my — L[H R m;, my)|?

and get
I11. PHONON-ASSISTED SPIN DIFFUSION RATE
N . . oy _ L ikt 2012
The transition rate for a combined, 8 transition, taking [(H o = 16 R? (1 -3 costy)
place on two different spins in the presence of a phonon field, :
will now be calculated by the golden rule. Due to the limited X [+ 1) — m(m; + 1)]
validity of the golden rule, this treatment is an approximate X [1(1 + 1) — m(m, — 1)]. [16]

one. A more exact treatment of the transition rate, like that

given in Ref. ), becomes hopelessly complicated in th? e phonon matrix element is obtained using the relation:

E;efheenzfsgfotrr:j(ae:a}tgrcmeul-:;m|Itonlan. The rate will be caIcuIat%R Ind = Vi + 1ng + 1) andbyng = Vdne — 1) as

ﬁwk
= COS4¢ij W Ng. [17]

Ju
2 ‘ <n- — l‘ i n‘>
Wip = o E |<2, n|Hint|1: no>|28(E2,n — Ein). [13] K X K

The summation over the phonon states is made in two stef
Here|1, n,) and|2, n) represent the initial and final states oby summing first over the directions of the wave vecthrs
the combined spin—phonon system, respectively (1, 2 referdad then over the phonon frequencies. We assume for
the spin states and, n, denote the phonon states), and theimplicity that the directions ok are distributed isotropically

summation is made over the phonon states. in space and average the &g term over the sphere. We get
. (4m)~* [§ dQ cos'¢; = & The summation ovewy is
1. One-Phonon (Direct) Processes replaced by an integration over the Debye density of states,

The HamiltonianH{ of Eq. [12a] contains single-phonon

creation and annihilation operators that permit an absorption or oo 3Nw§
emission of a single phonon. It thus describes one-phonon > - dwgp(wy) with p(wp) = —
(direct) processes. ok 0 °

a. One-phonon absorption.We assume that the spin
undergoes a transitiam; — m; + 1 (transitiona) and the spin Here, w,, represents the Debye cutoff frequency that is relatec
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to the Debye temperatug by Zw, = kg0,. After integration, wb =3 Wi(jl)_ [22]
Eq. [15] becomes i

27w (HO))2 AN 1 In the calculation ofv'” one encounters the ter® [(H{Y)|2, .,

Wiz = "5y ntimm Mc2 \ wp)  exp(hA/kgT) — 1° that can be conveniently expressed in terms of the secon
[18] moment (4)
The one-phonon absorption rave,, vanishes forT — 0, 3 (1 — 3 cogh;)?
reflecting the fact that there are no phonons left at zero tem- M=, yiRA( + 1) RO (23]
j I

perature. FomiA < kgT (the condition that will be met in

spectral spin diffusion at practically all temperatures, as the

spacing of the resonance lind$2+ is of the order of kHz, Using Eq. [16] and defining

whereaskgT/h amounts to 20 MHz at a temperature as low as

1 mK), one is allowed to replace [expf/ksT) — 1] * in Eq. [0+ 1) — m(m + DI+ 1) — m(m — 1)]

[18] by ks T/AA, so that the rate is directly proportional to the f = I+ 1) ;

temperaturew,, o« T.
b. One-phonon emissionln a reverse transitioom; + [24]

1 —m; andm, — 1 — my, the energy differenca is negative,

so that one phonon has to be emitted to satisfy the enemye gets

conservation. The initial state of the system is ndwn,) =

Im; + 1, m; — 1, ny), and the final state i, n) = |m;, m;, 2

ni + 1). The calculation of the one-phonon emission ate > KHD o = 1o Maf [25]

proceeds in the same way as before. There one encounters the j

phonon matrix element of the form

e 2] 55 I
Ni aXH N

yielding

so that the one-phonon spin diffusion rate can be written as

h i,
= COS4¢ij W (nR + 1)1 [19] O 1 ( A ) 3 kai [26]

1 — — -
W= 1o Mef ez A

Wp

A characteristic feature o' is its linear dependence on
W1 = exp(iA/KgT) W, [20] temperature. It thus represents a temperature-dependent cc

tribution to the total spin-diffusion rate via the direct (one-

The one-phonon absorption and emission rates thus obey pleenon) absorption and emission processes.

tailed balance principlev,,/w,, = exp(—#%A/ksT). The emis

sion ratew,, is non-zero also af — 0, reflecting the fact that 2. Two-Phonon Processes

the spontaneous one-phonon emission can occur alse-ab.

However, due to the validity of the inequalifyA < kgT at

practically all temperatures (except in the close vicinityfof

0), one can replace expf/ksT)[expA/ksT) — 1] *in Eq.

[20] again bykg T/ A, so that the one-phonon emission rate i

also directly proportional to the temperatuve;, o T.

The HamiltonianH & of Eq. [12b] contains quadratic forms
of the phonon creation and annihilation operators and describe
two-phonon processes. There are four such processes, a tw
ghonon absorption, a two-phonon emission, and two Rama
processes (the absorption of one phonon and the emission

The total one-phonon flip-flop transition rat&® of a given another, gnd the reverse process). We calculate the transitic
pair of spinsi andj is obtained by summing up the absorptiorqates again by Eq. [13] , o )
and emission rates a. Two-phonon absorption. The initial state of the system is
' here|1, ny) = |m, m, n, ni), and the final state i, n) = |m +
IL,m —1,nmn — 1, m — 1). In the calculation of the matrix
element ofH$ one encounters a phonon matrix element

8uH 2
‘ nR—l,nR,—ll ax ’ng, Ni

The corresponding one-phonon spin diffusion rate is obtained 5
by summing the contributions from all spirsthat interact _ ( h COS4(1)--> w0 NN [27]
dipolarly with the given spin 2MNc? I

1 _
Wi(j) = Wyp + Wy

_ﬁ H @y 2 1 A 32k78T 21
- 5% |< int>|m.,mI MCZ wp AA [ ] 2
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In the summation over the phonon states we again first avergge wp] demonstrate that in the Raman process the phonon
over the spherically isotropic distribution &fdirections and from the whole spectrum participate, with the restriction that
next sum over the frequency spectrum of both phonons. We ¢fe¢ difference in frequencies of the two phonons involved
equalsA. Since A < wp, practically all phonons from the
1 spectrum are involved, so that the Raman rate should be muc
f dng dopw,o

3 larger than the two-phonon absorption rate.

WEE = 187[(H()2 :

mm A2 6
' (Mc%) " wp Since the ratew 3™ andw}" differ only in the integration
1 limits, we can combine these two terms into a sum rate
X [expfiodkaT) — 1]
1
X
[exp(hwilkgT) — 1]

(2abs (RD)
Wi + Wip

8(A — vy — wi).  [28]

mm (Mc?)? w8

1 1 @D
= 187|(H9)|2 f do(A — 0)3w?
0

Performing the integration over thefunction, we get

1 1
. e 11 o X Texh(A — w)/kaT] — 1} [explholkeT) — 1]
Wi = 187[(HiD)| (Mc?)? of dw(A — w)’w [31]
0
1 where the integration now extends from Odg.
X {exd (A — w)/kgT] — 1} c. Two-phonon emission rate and the inverse Raman rate

1 In the reverse spin transit?ormi + _1 —m; andm; — _1 —
% ) [29] ™M the energy differencd is negative. In order to satisfy the
[exp(fiw/ksT) — 1] energy conservation, two phonons are emitted (a two-phono
emission process) or a phonkiis emitted and’ is absorbed,
Here the limits of integration [0A] reflect the fact that only with the energy of the emitted phonon higher than that of the
those phonons from the spectrum participate in the two-phongsorbed one (the reverse Raman process). The initial state
absorption process whose frequencies satisfy the energy-cann,) = |m, + 1, m; — 1, ni, ni), and the final state for the
serving conditionwy + wg = A. SinceA is small compared two-phonon emission i, n) = |m,, m;, n; + 1, np, + 1)
to wp, only a small part of the phonon spectrum is involvedwith the energy conservation condition; + wp = A,

b. Raman process.In the Raman process, a phoniohis Wwhereas for the reverse Raman process the final sti2e s
absorbed whereas another photkas emitted. The initial and = [m;, m;, ng + 1, ng — 1) with wp = wi — A. Performing
final states are herd, n,) = |m;, m;, ni, ni) and|2, n) = the same calculation as before, we get the sum of the twc
Im + 1, m — 1, ng + 1, np — 1). We assume that the phonon emission rate$"™ and the reverse Raman rat§” as
absorbed phonon has higher energy than the emitted one so that
the energy conservation is given by, = oy + A. A wZem + wR2 = exp(nA/KsT)[WZ + wiY].  [32]
straightforward calculation yields the rate for this Raman pro-
cess (denoted as R1) as

The total two-phonon transition rate? of the pair of spins
i andj is obtained by summing up the rates of all four
two-phonon processes. We get

1 1 ([
Wiy = 18’7T|<Hi(r(|)t)>|ﬁm,mj (I\/Icz)zwgf do(A — 0)3w®
: Wi = W Wi+ W Wi
1

% (on |2 1 1
{exd7(A — w)/keT] — 1} = 18m[(Hi) mm rezz 6 [1 + expfid/kgT)]

(Mc%)* wp

1

X [explholkeT) — 1]

1

0 . .
)G T s — ok TT - 1

Equation [30] is exactly the same as Eq. [29], except for the

limits of integration which extend here froto w, (note that x 1

sincew > A, the negative sign ofA — w)® in the integral is [expiw/kgT) — 1]
compensated by the negative sign of the {&( — w)/ksT]

— 1} ! term, so thaw$}" is positive). The integration limits It is easy to see that since < w, the ratew{” is essentially

[33]
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independent of the energy mismatshLow frequenciesy =~ a o5 . . :
A contribute almost negligibly to the integral in Eq. [33], so I /‘
that it is allowed that we make th& — O approximation, 0.4 -
yielding — r 1
2 03 .
0
1 R 1
wip = 18W|<Hfrﬁ?>|$.,mjwwfg g 0-2__ ]
x| d o 34 "l ]
. “ cosihwlksT) — 1° (341 00 | .
00 05 10
T/6p
The two-phonon spin diffusion rate is again obtained by b ‘0
summing the contributions from gllspins, = ]
08 ~
w = w. [35] —~ i ]
] S':—: 06+ -
0T _
Using Eq. [25]w®® can be written as 9’; 04 ~
3 1 1 02 B
w?=-——#2M,f —5 - 1
2 2 (MCZ)Z g 0.0 i | 1 1 ] 1
3 00 05 10 15 20
" ® T/0p
x f do cosiw/ksT) — 1° [36] -
0 FIG. 2. (a) Temperature dependence of the two-phonon spin diffusion rate

w® given by Eq. [36] (the normalized integral of that equation is displayed

) @ only). (b) The ratio ofv®® (Eq. [36]) and its high-temperature expression given
The two phonon rate/ thus represents another temperatur%y Eq. [37] (denoted on this graph a&3) as a function of temperature. This

dependent contribution to the total spin-diffusion rate. ItsS d@sio is shown in order to demonstrate the temperature range where th
pendence on temperature is displayed in Fig. 2. At temperégh-temperature expressian® is a good approximation tev®. The two
tures much higher than the Debye temperatiyéwhereksT ~ expressions agree to better than 90% at temperatures higheT tsad. 76,.

> fwp), W? gets a simple temperature dependence. There we

may expand the cosh term in Eqg. [36] in series, and the

resulting integral may be calculated easily, yielding IV. DISCUSSION
o 3T, 1 1 [kgT\? The phonon-assisted transition rate$ andw'® represent
we =5 RM. f (Mc)2wp \ A [37] temperature-dependent contributions to the total spin diffusiol

rate as a result of coupling of the spin degrees of freedom to th

In the high-temperature limi > 6, the raten® thus depends lattice. In a classical picture the temperature-dependence of tf
on temperature a%?. At the other extremd — 0, another rates originates from lattice vibrations that time-modulate the
analytical temperature dependencews? can be derived by distsance between the interacting spin partners and change t
introducingx = A w/ksT into Eq. [36]. The upper limit of 1/rj factor in the coupling Hamiltonian, resulting in an-en

integration,/T may then be extended to infinity, yielding hanced dipolar interaction between the spins. In the one-phc
non processes only those phonons from the spectrum are i

1 1 [keT\”’ volved whose frequencies equal. In the two-phonon
fmﬁ <ﬁ) processes, two-phonon absorption and emission involve phc
° nons from an already larger (but still relatively small) part of
Jx %6 the spectrum with frequencies between 0 @dlrhe Raman
X dx
0

3
w® = o f2M,

[38] processes, on the other hand, involve phonons from the entil
spectrum, extending from O t@,, so that these processes
should be by far dominant at temperatures not too clo3e=o

The integral in Eq. [38] is finite so that the raté® varies as 0. This can readily be seen by calculating the raiid/w®

T’ in the limit T — 0. using Eq. [26] and the high-temperature expression Eq. [37].

coshx — 1°
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One gets larger than their widths so that there is no overlap between th
lines. The lack of energy conservation then yield® = 0 in
w® 3 Mc2/ A\?2 the above model.
w2 keT (co[)) [39] In a more realistic description, the dipolar coupling betweer

the spinsl;, as well as the dipolar coupling of spihsto the
“passive” extraneous spir;, should be taken into account

. . X ~~ already in the calculation of the energy levels. The levels
and since the Debye frequency is typically of the oragr~ would then acquire certain widths, and the overlap between th

13 1 ; oV w? <
10. S5 yvhgreas& is of the order of kHz, the ratio™"/w™ < resonance lines would induce a non-zero raf& Here, how
1 is vanishing small. The one-phonon processes may thuse%e

neglected at temperatures not too close to zero. At temper er, one encounters the problem that the mismatch erergy
9 P ' P& a spin flip-flop transition can be shared rather arbitrarily
tures close td = 0, however, the one-phonon processes stegr

The factorMc?/k, T is of the order of 10 at room temperature

to dominate over the Raman processes due to the fact that Iétween the phonon field and the dipolar reservoir of the
One-phonon SONANEOUS emri)ssion can still occut at 0 Assive spins. This is clearly a complicated situation that is nc
P P ’ ea;y to handle in a theoretical model.

whereas the Raman processes (where one of the two phonon n ad hocsolution of the above problem can be proposed by
involved has to be absorbed) vanish due to the vanishing of tggopting the results of Bloemberge2),where the spin diffu-
phonon occupaf[ior) number; at T = 0. In. addition to the sion ratew® of theH® term was deri\,/ed (again by means of
one: honon emision, the o honen erisson can 150 05 L1 ) er e assumpto o e Inbws. T
diffusion ,rates If we are restricted to the temperatures that r(raes onance lines of the transitionsand s are described by the
' zi'inesha\pe functiong,(w) and g,(w), respectively, and the
not too close to zero, we may expect that the temperaturr ew® is calculated to be
dependence of the total phonon-assisted spin diffusion rate wﬁ
be determined by that of®.

Another point to discuss is the use of the long-wavelength o _ ) , , , , ,
approximation as given by Eq. [10]. This approximation, W= = 13 M:f [ do’ | d’g.(0")gs(0")d(e" — o),
which rests on the assumption that the phonon-induced atomic [41]
displacementsi do not vary appreciably over an interatomic
T jere he iegrl epreserts e overap between th o
appro>2imation thus breaks down at the upper end of thé 0 r%_sonances. This rate vanishes rapidly (exponentially in th

: .~ "'case of Gaussian lineshapes) when the frequency separati
non spectrum whew =~ wp. Although there is no real justi — @, of the lines becomes larger than their widths
fication for this step (performed mainly because of mathema(\’ff‘.l_he afbove phonon-assisted spin diffusion raw&éandv:;@;

ical tractability), one may a'ntl'mpate the arguments of AbragaWere derived analytically under certain approximations, whick
(15), who argued in a similar calculation of the phonon-

) : : . . .made the calculations mathematically tractable. The approxi
induced NMR spln-latt'|ce relaxation rate that this NCONSISn ations involve the use of the golden rule, the Debye densit
tency does not appreciably affect the results.

Lo . . . of phonon states in a monoatomic crystalline lattice, and the

ter-rl;girgtt?rlesgle?pcejfgsrlgnccr)i[t?igéiigsnng)bﬁge\jﬁf{oii?r:gntqhe long-wavelength expansion of the atomic displacements. Ir

e I . : view of that one should not be too surprised if the magnitude:
perature-independent contributiorf® that is determined by b g

o ) . S of w® andw®, estimated from Egs. [26] and [36], fail in the
the termH,y (Eq. [6]) of the interaction Hamiltonian, order of magnitude. The temperature dependence of the rat

(linear in T for the one-phonon processes, affdat T > 6,
i =wO + w4+ W@ [40] and T’ for T — 0 for the two-phonon processes) is, on the
Tsp other hand, typical for phonon-assisted rate processes ar
hence can be considered as correct. We can estimate the ore
The ratew® represents the spin diffusion rate in the absence of magnitude of the two-phonon raté® from Eq. [37] for the
coupling of spins to the lattice. In our choice of the maif’Rb spin diffusion in ferroelectric RbjfO,, where the pres
HamiltonianH,, the dipolar interaction between the spins ence of spin diffusion between tHéRb nuclei was demon
was not taken into account in the calculation of the energyrated unambiguouslyl€). The ®Rb second moment was
levels, but was treated as a perturbation only that causksermined there to bbl, = 6 X 10°® s™% and the Debye
flip-flop transitions between the levels. The levels are thtismperature in this crystal is known to be about 400 K, yielding
sharp in this approximation, so that in the presence of ap ~ 5 X 10® s™*. Takingc =~ 3 X 10°® ms* for the speed
energy mismatch\ there is no overlap between the levels. Iof sound, we get al = 400 K the order of magnitude of
real systems such a situation is met in cases where the sepd-~ 10 ° s™* that results in astronomically long spin diffu
ration between the exchanging resonance lines is consideratin times. The main reason for the smallnessét is the
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Debye frequency,, of the order 16’ s * in the denominator of this vanishing is trivial, whereas fa& = 0 the square bracket
Eq. [37], which essentially kills the rate. The rat&’ would becomesX;(uf — u) + Y,;(u! — u?), that is zero, due to
increase for several orders of magnitude if tieb nuclei were Xi =Y; =0.

replaced by lighter nuclei with larger magnetic dipole mo- Equation [42] shows that thé fluctuations might yield a
ments, e.g.*H. SinceM, « /', the second moment of protonscontribution to the total spin diffusion rate comparable to that
increases by a factdd ,(*H)/M,(®Rb) ~ 10°. In addition, the of the distance fluctuations. Since both kinds of fluctuations
mass ratio yields another increase M(f’'Rb)/M(*H)]*> ~ depend on the atomic displacements in the same way, their sp
10*, so that the order of magnitude of the rate is increasedftip-flop rate contributions shall exhibit the same temperature
w®(*H) ~ 10 % s™*. This is already observable in an experdependence. Thefluctuations will thus basically increase the
iment. The theory of phonon-assisted spin diffusion, presentedgnitude of the phonon-assisted spin diffusion rate. Furthe
in this paper, should thus be taken as a starting point towarevark is needed to consider this effect in more detail.

more complete theory that should yield better estimates of the
magnitudes of the rates. One can, however, expect that the
temperature dependence of the rates in such an improved

theory will not be much different from the one derived here. L L .
y Spectral spin diffusion in the presence of acoustic vibrations ir

In the above model it was considered that the spin diffusionsolid_State crvstal is a temperature-dependent phenomenon w
rate is affected by the lattice vibrations through the fluctuatioRs ry P P P

of the interspin distance, only. Phonons can, however, mo q2 relatively simple temperature dependence of the transition rat

ify the dipolar Hamiltonian also through another effect, i.e., thlc‘a'ke n any phonon-as&sted mpoherent phenomenon (e.g., ph

fluctuations of the cd® term. This corresponds to orientationnon'mdlm'ad incoherent tunneling), the direct (one-phonon) pro

fluctuations of the interspi'n vectdi, with respect to the cesses introduce a linear temperature dependence of the rate
ij

direction of the magnetic fiel&, = (0, 0, B,). The orienta tﬁmpehratuhresdnqt to% close o= 0. Twol-.phorlion processes,don
tion fluctuations do not influence all spin pairs equally. Tht e other han ,.|ntro uce amore comp |c§1te 'tempe'ra.ture epe
cos6 angular dependence implies that the pairs with orient ence that again becpmes simple ana]yﬂcgl |n.the lidits O
tions of their interspin vectors close to parallél £ 0) or and T — 0. Recognizing that the spin diffusion rate can be

perpendicular § ~ /2) to B, do not alter their dipolar cou temperature-dependent somewhat complicates the analysis of t

pling by the fluctuations i due to the very slow change of thetwo-d|men5|onal exchange NMR spectra where the effects

co<0 there. The pairs with orientatiors ~ /4 are, on the chemical exchange and spin diffusion cannot be resolved in

other hand, affected significantly, so that theluctuations simple way. The discrimination of the two effects is usually basec

provide another phonon-assisted temperature-dependent 0onn-the assumpn'on. that the chemical exchange rate depends
tribution to the total spin diffusion rate. emperature but is independent of the frequency separation of tt

An interaction Hamiltonian for the combinedand distance exchanging resonance lines, whereas the spin diffusion rate b

fluctuations can be derived by expanding the tefi(t)(1 — haves in the opposite way, depending on the separation but beil

3 cog6,(t)) of the dipolar Hamiltonian in terms of the atc)micindependent of temperature. The fact that in a solid both rates a

displacementsi,. A calculation similar to that used for thetemperature-dependent, but with a markedly different temperatut

derivation of Eq. [5] yields an expansion up to the linear terl%ependence (the linear and quadratic phonon-induced depender
in G as ' at temperatures not too closelte= 0 has to be contrasted with the

Arrhenius thermally activated exponential type in the chemica
exchange process), may still be used as a criterion to discrimina
1 - 3 cos(t) between the two effects. However, one has to measure the re
rit) experimentally in a rather broad temperature interval and dete

1 - 3 cog, 3(0, - 1) - Ri mine its origiq from the temperature depgndence. The simple.fa(

~ R3 ( — RZ ) that the rate is temperature-dependent is not enough to assign
g U unambiguously to a chemical exchange process. A similar terr

(T —T) - F:zij u7i —uf perature dependence of the spin diffusion rate can be expect
— Rz cost; R] . [42]  also in liquids where internal molecular vibrations play the role of
! lattice vibrations. The temperature-dependent spin diffusion thu
seems to be a rather general phenomenon, occuring more as a r
than as an exception at temperatures not close to the absolute ze

V. CONCLUSIONS

+ o3 | cos6;

Rﬁ ij
Here, cos(t) = (7 - (0, 0, 1)ky) = (zy/ry) (with z; =
Z; + uf — uj) and cosh; = (R; - (0, 0, 1)R;y) = (Z;/Ry)
are the time-dependent and static (time-average) values of the

cosine term, respectively. The first term on the right-hand side REFERENCES

of Eq. [42] originates from the distance fluctuations whereas. N. Bloembergen, Physica 15, 386 (1949).

the 6 fluctuations contribute the second term. It is easy to Seg N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, Phys.
that the# fluctuations are zero fa¥ = 0 and«/2. For6 = w/2 Rev. 114, 445 (1959).
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